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Abstract. The spectral theory for the Sdiginger equation on the half-line is treated through

an analysis of the asymptotics of quadratic forms in a pair of solutions. Solutions of the second-
and third-order differential equations for these forms are derived. In the case of the second-
order DE (Milne’s equation), it is shown that a single solution leads to the determination of the

singular spectrum; this generalizes previous results which applied only to isolated points of the
discrete spectrum. For the absolutely continuous spectrum, it is shown that a single solution
allows one not only to locate the spectrum, but also to determine the spectral density function
explicitly.

1. Introduction

The time-independent Sdbtinger equation at energy for a quantum mechanical particle
moving in a potentialV (x) is given, in suitable units, by
& f(x,3)
ok
This equation is fundamental to quantum mechanics in one dimension, and with appropriate
modification of the potential also applies to three-dimensional problems with spherical
symmetry. From the solution of the equation one can deduce, in principle, the energy

levels of the Hamiltonian
2

+ V@) fx, L) =Af(x,A).

H=—

dx2
the location and nature of continuous spectrum, scattering amplitudes and cross-sections,
and so on.

This paper is concerned with the spectral analysis of thed@atger HamiltonianH,
and in particular with the connection between spectral analysis and asymptotics of solutions
f(x, 1) of the time-independent Satdinger equation at spectral parameter We have
three principal aims in mind.

Our first aim is to show how recent developments in spectral analysis imply that it is
the square of the wavefunctigff(x, 1), and the integral of the square of the wavefunction,
rather than the wavefunction itself, which plays the key role in spectral analysis. This is
already well known in the case of the discrete spectrum. An eigenvalue of the Hamiltonian
can occur only at an energy at which the solutionf(x, A) is square integrable (and
satisfies some boundary conditions which may be imposed). However, it is possible to go
further and show how a complete spectral analysis, including both continuous and singular
spectrum, is a consequence of the asymptotics of the squares of the sofifiens) and
their integrals.

+ Vi(x)
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In view of the fundamental role of? rather thanf, our second aim is to derive a third-
order equation satisfied by quadratic forms of the solutions, and to explore the algebraic
structure of both this and related equations satisfied by the squared wavefunction. In the
simplest case of zero potential, with= k?> > 0, a straightforward argument will lead to
this third-order equation. A linear homogeneous DE in this case satisfied by the squares
of all solutions of the Sclidinger equation must have as solutionsdas sir? kx and
sinkx coskx, and hence by linearity a basis for the solution set will be 1, ¢os &in Zx.

The third-order DE with this solution set is
3
d3Y (x, 1) +4AdY(x,A) _
dx3 dx
For extension to general potentidlgx) see [1]; the equation can be obtained either from the
Schidinger equation, by substitution fgi®, or as a consequence of Milne’s nonlinear DE
(see section 3). Our own derivation is new, and brings out more clearly the algebraic
structure of this and related equations (including Milne’s equation) which follow as a
consequence.

Finally we show how the asymptotics of solutions of the third-order DE fférand
Milne’s equation may be used to derive not only the location of the singular and continuous
spectrum, but also an explicit formula for the spectral density function itself. We believe
that these results, which generalize previous arguments in the physics literature, are not only
useful in themselves, but point the way to possible future developments in spectral theory.

0.

2. Analysis of singular and continuous spectra

We assume the Sdbdinger equation in the form

—d?f(x, )
T +FV@) fx, M) =Af(x,A)
on the interval 0< x < oo, where both.. and the potential functioir (x) are assumed real.
To simplify matters, we assume th#t is integrable over any finite interval € x < N,
though most of the theory can be extended to a wider class of potentials or to Hamiltonians
defined on either finite intervals or in the whole real liRe
It is convenient to define two solutiongx, 1), v(x, A) of (1), subject respectively to
the initial conditions

d
w=1 a“:o at x=0
and
v=20 @zl at x =0.
dx

The Hamiltonian
d2
H== 5+V®

is a differential operator acting in the Hilbert spa&é(0, co), subject to a boundary
condition atr = 0, which we take to bg (0) = 0. In most cases of relevance to physics, we
are in the so-called limit-point case (see [2], for example) for which no boundary condition
at infinity is required; this will be so, for example, ¥ is bounded at infinity, but also
under much more general conditions.

A given value of will be an eigenvalue off provided [, v?(x, 1) dx < o0; v(x, 1)
will then be the corresponding eigenfunction. Eigenvaliieare said to belong to the



Quadratic forms of the Schdinger equation 6583

discrete spectrum off/. For definitions of other types of spectrum, for example singular
and absolutely continuous spectrum, see [3, 4].
The HamiltonianH is unitarily equivalent to the multiplication operatgr — A¢
on a Hilbert spacd.?(R; ) where i is the spectral measure and the norm is given by
lol? = fo°° ¢?(0) du. The various types of measure then correspond to a decomposition of
the spectral measune = us+ ac iNto its singular and absolutely continuous components.
Recent work in spectral theory has recently identified criteria for pdirtts belong to
the singular or absolutely continuous spectrum, based in each case on estimates of integrals
of the squares of solutions of (1); it is these results, in part due to the present authors,
which motivate the work presented in this paper. The main results can be summarized
under two headings, results based on the idea of subordinacy, and results based on the
so-called condition (A).

(i) Subordinacy (see [5, 6])

A (non-trivial) solution f (x, A) of (1) is said to besubordinateif

N N
lim / F2(x, 1) dx// g2, ) de =0
N—oo 0 0

for any solutiong(x, 1) of (1) which is not a constant multiple of(x, 1).

It may be shown that the singular part of the spectral measure is concentrated on
those pointsk at which the solutiorv(x, A) is subordinate. Certainly, any eigenvalue is a
point of subordinacy, but there may be other pointsf the singular spectrum for which
v(x, 1) is subordinate but not square integrable. (The solutign A) in such cases is often
described as a semi-bound state).

The pointsi at which no solution f(x, 1) is subordinate belong to the absolutely
continuous spectrum off.

(i) Condition (A) (see [7, 8])

This condition is analogous to that of subordinacy, but relates to complex valued solutions
f(x,2) of ().
A solution f(x, 1) of (1) is said to satisfy condition (A) if

N N
lim / F2(x, 1) dx// | £2(x, A)|dx = 0. (1)
N—o0 0 0

The pointsi at which condition (A) is satisfied, for some (complex valued) solution of
(1), may be shown [8] to belong to the absolutely continous spectruiii .ofAt points

of the absolutely continuous spectrum, the Radon—Nikodym derivafiveld defines an
absolutely continous measure, with dengit§r); thus one hasd/dx = p(2) in that case,
where the density functiop characterizes the energy distribution of continuum states such
as scattering states. If the solutigtix, A) satisfying condition (A) is ‘normalized’ so that
f(0, 1) = 1, we can define a coefficied (1) by the equation

fx, M) =ulx,rA)+MRQ)v(x, L) (2)

whereu andv are the two solutions defined earlier. The coefficiétr), closely related to
the Weyl-Titchmarshn-coefficient (see [2]) leads to a direct determination of the spectral
density functionp (1), through the formula

du

1
o :;ImM(/\) (©)
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These two approaches, through subordinacy and condition (A), show that spectral analysis
may be closely linked to a study of the behaviour of the square of solution$ the
Schibdinger equation, and together suggest that the differential equations satisfied by these
squared solutions, or more generally by quadratic forms in the solutiomsmay have an
important role. For exampléf (x, A)|2 in the integrand of the denominator of condition (A)

may be expressed, through (2), as such a quadratic form.

In section 3 we shall consider these differential equations and their solutions. In section 4
we shall show how the asymptotics of quadratic forms govern the location of singular
spectrum, and in section 5 we shall apply condition (A) and (3) in order to relate the
asymptotics of quadratic forms to the spectral density of absolutely continuous spectrum,
in a specially simple case. For some recent applications of subordinacy see, for example,
[9-11].

3. A Schradinger equation for the squared wavefunction

Given the solutiong (x, A), v(x, 1) of (1) which we defined in section 2, we derive the third-
order DE having as solutions all quadratic formsimandv. The solution set of this DE is
spanned by the functiong, uv andv?, and hence contains any squared solution+-bv)?
of the original Schdinger equation. Since any two linearly independent solutions of (1)
could be used instead af v, we prefer to start from a basis independent characterization
of the third-order DE. This can be done as follows.

Consider the third-order DE satisfied by the product

Silx, ) fa(x, )
of any pair of solutionsf, f> of (1). We also consider the product
dfidfe
dx dx
of the derivatives. The following lemma described the resulting system of coupled DEs.

Lemma 1. Let fi(x, 1), f2(x, A) be any two solutions of (1) f = f> is allowed, and
define functionst' (x, A), Z(x, A) by

Y0 = A o h)  ZGr oy = LR A0 h)

dx dx
ThenY, Z satisfy the coupled differential equations
2
% —2(V(x) — MY (x, 1) = 2Z(x, 1)
4
dZ(x, 1) — v( )_)L)dY(x,)») @
o = X

Moreover,Y satisfies the third-order DE

d®Y (x, 1) dy (x, 1) dv (x)
which is also satisfied by all linear combinationsi3{x, ), u(x, A)v(x, A) andv?(x, 1).
Proof. Using

d2f1 d2f2

——=V-Mf and

a2 ae ~ VTP
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we have

A’y df 2 dadp
=g Tge TP de

xZ
dfid
= AV =D fot oV =0 f + 2££

which is the first of the two equations in (4).
We also have
dz _ d (dfdp) _dadp dedh
dr  dx \dv dv /)  dr dx2 = dx dx2
d d
=~y npe d—fz
X

=2V —0NY +2Z

V- =(V )»d =V de
= V==V =D (fif) =V =D

which is the second equation in (4). These two coupled equations are of some interest in
themselves. Here we use them to derive a third-order DB foFor another proof of (5),
see [1].
To obtain equation (5), we must eliminafefrom from equations (4). This can be done
by differentiating the first equation and substituting from the second Zoidd, giving

&Y d dy
which reduces to equation (5) on simplification. O

Sinceu, v are solutions of (1), it follows that the produets, uv, v? satisfy (5). Hence
au®+ buv + cv? satisfies this equation for any real numbers, c. It follows from general
uniqueness theorems for linear DEs that this is in fact the general solution. The general
solution forY, Z of the coupled equation is

Y = au® + buv + cv? Z=ua d—u 2+b d—u % +c % 2.
dx dx dx dx

Strictly, equation (6) is to be preferred to (5), which implies differentiability of the potential,
though this is not an important restriction in practice.

Although we can express the general solution of (5) in terms of solutigns of
the Schodinger equation, it is more in keeping with the theory presented here to solve
equation (5) directly, and to express the solution in terms of quadratic forms directly without
having to introduce the solutions, v of the Schoédinger equation explicitly. That this
can be done is a consequence of the fact that (6) is in anti-self-adjoint form; that is, the
corresponding adjoint equation is the same as the original DE, apart from an overall change
of sign. It follows that any solution of (5) may be used as an integrating factor, converting
the third-order DE into a one parameter family of second-order equations.

To verify this, first of all note the identities

Ly @Y _d [ Y (dr)®

dx®  dx A2 (dx)

Y{ d ((V—A)Y)+(V—k)dy} _d
= ar_ 9

Multiplying equation (6) through by 2, we then have

2 2
d {zyd r_ (dY) —av —,\)YZ} ~0

{(v —nr3}.

de |7 dx2 \dx



6586 | Al-Naggar ard D B Pearson

from which it follows that

2
2Y (x, )\)%Y(x, A — (dYg;’ M

2
) — 4V (x) - DI (x, )2 =8 )

whereg is a constant.

A further consequence of the anti-self-adjointness of (6) follows if we take any two
solutionsYi(x, 1), Y»(x,A) and use equation (6) withi = Y; andY = Y5, respectively.
Multiply the Y; equation byY,, the Y, equation byY;, and add, using the identities
&y, &y, d {Y d?y;  drpdr; . dZYZ}

he T T

B2 v e Ve

L v —orm v —n2 = v Zony
2@(( — Y1)+ Y (V — )E_a{( — MY1Y2}

together with the same identity witt, Y» interchanged.
This leads to the result

d d?y, d?y; dy; dv,

from which it follows, for any two solutionsys, Y, of (5), that

2 2
(chéjzz + Yz(jjxyzl> — %% — 4V — N)Y1Y, = constant (8)

The left-hand side of (8) may be regarded as a kind of second-order Wronskian of a pair of
solutionsY, Y,. Equation (7) is the special ca¥e= Y, = Y. (The same strategy, to reduce
a second-orderSturm—Liouville DE to a one parameter family of first-order equations, will
not work since the Wronskiariidf>/dx — f>df1/dx in that case, being antisymmetric, is
zero for f1 = f2).

Equation (7) is a consequence of (5), but also implies (5) on differentiating with respect
tox. ForY(x, 1) = fi(x, A) fa(x, A), the constang on the right-hand side of (7) is related
to the Wronskianfdf2/dx — f>d f1/dx. SubstitutingY = f; f> and using

A f B f
Wl:(V—A)fl Wz:(V—A)fz
we find, on simplifying, that
d dfi\?
p=— (fldf - fzdf) . ©)

If f1, f» are allowed to be complex, then any solutibn= au? + buv + cv® of (5) is a
productY = fi f», obtained by factorizing into real or complex factors. Carrying out the
factorization explicitly, and using the fact that the Wronskian afith v is 1, equation (9)
implies

B = dac — b2, (10)

If 8 =0, £Y is the square of a real linear combinationuofindv; in that case we have the
following second-orderDE satisfied by the square of any real solution of the 8Sdimger
equation:

2y

d?y dy
dx2 dx

2
> — 4V —NY?=0. (11)
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The above results may be used to express the general solution of (5) in terms of just one
particular solution of the equation. LEt(x, A) be a particular solution of (5), corresponding
to a positive value of the parametgrin (7). Without loss of generality we may suppose
that 8 = 4; if not take a constant multiple of this solution, for whigh= 4.

(Although we shall not need to consider the explicit expressionrfoas a quadratic,
we must have, from (10), that

Y1 = au® + buv + cv? with »% — 4dac = —A4.

Note thatY;(x, A) cannot be zero for any, sinceY; = 0 would imply u = v = 0,
contradicting the fact that

dv du
ua — va =1
One solution of (5) for whictB = 4 is Y1 = u? + v?).
The following lemma expresses the general solution of (5) in terms of a single
solution Y.

Lemma 2. Let Y1(x, 1) be any solution of equation (5) such that= 4 in (7). Then the
general solution of equation (5) is given by

X X 2
Y(x,X) = AY1(x, A) + BY1(x, 1) cos/ dr + CY1(x, A) sin/ — dr. (12)
0 0

Yi(2) Yi(r)

Proof. If ¥ = Y;cosfy (2/Y1(r)) dr then
d—Yzﬁcosf 2 dt—Zsin/ 2 dr
dx dx o Yi() o 1)

Y = dZchos/)r 2 dr 2 OIYlsin "2 dr 4 cos/x 2 dr

de2  dx? T Ya(r) Yide © Jo Yi(0) i~ Jo Ya(e)
Substitutingy, dY/dx and ¢Y/dx? into the left-hand side of (7) leads, on simplification,
to

®y;  [dr\? 5 r2
(zndxz - (dx> — 4V —N)Y? - 8) cos’-/0 G

Since, by hypothesis,

2 2
2Y1ﬂ - (dY1> — AV - WY =4

dt—4sin2/ 2 dr .
o Yi(?)

dx? dx
the left-hand side of (7), with

* 2
Y="1¥ cos/ dr
o 1)
—4<c052/x 2 dt+sin2/X 2 dt) =_4,
o Yi(?) o 1)

2
Y = chos/ dr
o Yi(r)

satisfies (7), with g8 constant equal te-4, and similarlyY; sinf(j‘(Z/Yl(t)) dr satisfies
the same equation, again with= —4. Since equation (7) implies (5) on differentiation,

is just

Hence
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it follows that these two functions are both solutions of the third-order DE. We therefore
have three solutions of this DE, which may be verified to be linearly independent. Hence
the result of the lemma. O

Starting from a particular solutior; of (5), the two other linearly independent solutions
exhibited on the right-hand side of (12) may be identified, as quadratic formsamd v,
through their initial values, at = 0, of Y, dY/dx and ¢Y/dx?, using standard uniqueness
theorems applied to third-order linear equations.

For example, withry = u? + v?, in this way we find

r 2
chos/ dr = u? -2
o Yi(®)

2
Ylsin/ —— dr = 2uv
o Yi(®)

4. Milne’s equation and the singular spectrum

The nonlinear differential equation known as Milne’s equation is usually derived from the
polar decomposition of the pair of solutionsv of the Schédinger equation.
That is, we define function®(x, A), 6(x, A) by

u = Rcosd }

13
v = Rsin@ (13)

so thatR = +vu? + v2 and targ = v/u.
The constancy of the Wronskiardv/dx — vdu/dx = 1 then impliesR?dg /dx = 1.
Differentiating either of equations (13) and substituting into the &dihger equation,
we arrive at Milne’s equation for the functiaR, namely

o 1

— —_R(x, A Vix)—MDRx,A\)+————=0
g2 R A+ (V) = MR, 4) + R3Ge. 1)

Equation (14) is closely related to the solution of the &dimger equation, in that a single

solution R of Milne’s equation will lead to the general solution of Sétiinger’s equation,

thus

(14)

fx,2) =CR()C,)\)SiI’1</x21 dt—b)
o R, )

whereb andc¢ are constants.

For this and related results see the review article [12].

Of course,R = +u? + v2 is not the only solution of Milne’s equation. For the general
solution in terms of square roots of quadratic forms see Eliezer and Gray [13]. We can
derive Milne’s equation from the second-order DE o, A) in (7), with the parameteg
taken to have the valug = 4. With 8 > 0, we cannot hav& = 0, so we assum& > 0.
(Otherwise replac# with —Y). Dividing equation (7) by #¥2 we have

_}y—l/zdzl 1 dy

2
“y-s2 (2L _ayle Ey—s/z _
5 a2 + 7 (dx> + (V=2 + a 0

where the first two terms on the left-hand side may be written

gy e

dr |27 dr or T2
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HenceR = Y12 satisfies

—OIZ—RJF(V—A)IHi =0
dx2 4R3
which becomes Milne’s equation in the cgée= 4.

It follows from (10) that if Y = au® + buv + cv? is a quadratic form for whicla > 0
and 4ic —b? = 4, thenR = /Y satisfies Milne’s equation. We may use this result to write
down the solution of Milne’s equation subject to the initial conditions
dRr
dx

R=A(>0 —B  atx=0

namely

R(x, %) = v (Au(x, ) + Bu(x, 1))2 + A=202(x, 1) . (15)

The original solutionR = +/u? + v2 corresponds to the special cage= 1, B = 0;
solutions for whichR < 0 initially are given by the negative of the right-hand side of (15),
now with A < 0. Through these two families of solutions, respectively Wkt 0, R < 0,

we have the general solution of Milne’s equation.

One of the main applications of Milne’s equation in the literature (see [12], for example)
has been to the eigenvalue problem for the 8dimger operator on the real line. Here the
solution R = v/u? + v2 of Milne’s equation has been used to determine the ground state
and excited energy levels through the solutios A, of the equation

lwﬁdt:(n—i_l)n n=012..). (16)

The corresponding equation fay, if the Schibdinger operator is defined on the half-line
becomes

*© 1
/(; mdt:(ﬂ+1)ﬂ n=012..) (17)

where we have again assumed the boundary condjfi@ = 0. Equations (16) and (17)

are not, strictly, equations for eigenvalues at all, but may be regarded as sufficient (but
not necessary) conditions for a poihtto belong to the singular spectrum. For example,
equation (16) holds witm = 0 at zero energy if we tak& (x) = 0; howeverir = 0 is

not an eigenvalue but the energy of a semi-bound state. Similarly equation (17) for the
differential operator on the half-line, shows that the solution, A), given by

A) = R(x, 1) sin /xil dr
ven )= RO A <o R2(1, %) )

is subordinate ak = A,. According to the discussion of section 2, such poihtswill
belong to the support of the singular measutethough they will only be eigenvalues if
is square integrable.

Neither equation (16) nor equation (17) holds in the case of potemtialsfor which the
Schibdinger equation is oscillatory. This is because, for example in (17), the convergence
of the integral implies that the solutionsand v have only a finite number of zeros, in
which case the DE is said to be non-oscillatory. The integral in (17) will certainly diverge
whenever there is an absolutely continous spectrum. However, any potential for which
the Hamiltonian has singular spectrum not consisting of isolated eigenvalues will also lead
to the divergence of the integral. Such potentials are of considerable current interest in
spectral theory; see [14], for example, where it is shown that the poténtigl = cos./x
has singular spectrum which is dense in the interval< A < 1, a situation which may be
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likened to that of an operator for which every rational number in this finite interval is an
eigenvalue.

To deal with examples such as these, it is necessary to find an equation which generalizes
(17) and which may be used to characterize the singular spectrum of the Hamiltonian, even
if the integral on the left-hand side of (17) diverges.

This can be done as follows. Suppose for simplicity that there is an intervalx < A
on which the Hamiltonian has no absolutely continuous spectrum. In that caske,, @a][
the spectrum must be purely singular, consisting either of eigenvalues, or of a singular
continuous spectrum, or of some mixture of these two. Definefor 0 andi; < A < Az,
the functiond (N, A) by

Moo

and letd, (N, A) = 0(N, M)|modr; the right-hand side of of this equation means subtracting
from 6(N, 1) for a givenN and A, an integral multiple ofr, to arrive at a humber in the
interval —7/2 < 6, (N, ») < /2. Now define a functiod, (1), for (Lebesgue) almost all
A€ [)»1, )»2], by

0-(\) = Iin;]-meas%, (N, A). (19)

The limit on the right-hand side of (19) may be shown to exist for almostirak
[A1, A2], using arguments based on value distribution; see [15, 16] for a discussion of
value distribution applied to the spectral theory of Herglotz functions and of differential
operators—the complete proof of (19) and further consequences of this result will be
published elsewhere.

The limit on the right-hand side is a limit in measure. We say éhatv, 1) converges
in measure t@, (1) if, for every e > 0, the Lebesgue measure of the set of pointst
which |6, (N, 1) — 6,(1)] > e converges to zero in the limit a¥ — oo; roughly this
means that, for large Nj, (N, 1) will be close to6, (1) except at a set of having small
Lebesgue measure. Note that if the Sxtinger equation is oscillatory theh (N, o) will
not converge t@, (1) in the ordinary sense, singg (N, A) will then assume every value
in the interval F-/2, 7/2] infinitely often, for largen.

Equation (19) defines the functiafy (1) almost everywhere on the interval,[ 1,].
(As a technical point on which we shall not dwell here, for any paiat whiché, (1) has
an approximate limit, we can identify the value @f(1) with that approximate limit—this
makeso,, (1) approximately continuous at all such points For definitions of the notions
of approximate limit and approximate continuity, see [17], for example).

The following theorem now provides a characterization of the singular spectrum which
holds for oscillatory as well as non-oscillatory DEs.

Theorem 1. Suppose the spectrum is purely singular on some inteialip], and define
0 (1) for almost allx in this interval by equations (18) and (19) (with(1) approximately
continous where the approximate limit exists). Then the singular measugesupported
on the set of all. € [A1, A,] for which 6, (1) = 0.

Although we shall not provide the proof of this result here, it may be helpful in
understanding the implications of the theorem to give a more intuitive interpretation. A
point A9 will belong to the singular spectrum provided that, for larye the integral
fON (1/R2(t,A)) dr is to be found very close to an integer multiple of for ‘most’ A
near tol = Ao. For example, ifvg is any eigenvalue off, we can expect in the oscillatory
case, asV goes to infinity, that, except for shorter and shorter interval®ofalues, the
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integral will be close to some multiple af. On these short intervals iN, which will be
centred on the values &f for whichu (N, Ag) = 0, the integral will be very rapidly varying
as a function ofv, and will approximate to a step function having jusap Except on these
short intervals of rapid increase, the integral will be relatively slowly varying. Only in
this way can a continuous, increasing functionNof which diverges in the limitv — oo,
nevertheless be found predominantly close to a multiple (but riicied multiple!) of .

The functiong,, (A) defined by (16) can also be used to characterize the singular spectrum
for the operator—d?/dx? 4 V (x) subject to a general boundary conditionva¢ 0. If, for
example, we define the Hamiltonidh, = —d?/dx?+V (x) subject to the boundary condition
(cosw) f + (sina) f/ = 0 atx = 0, then the singular measure &, will be concentrated
on the set of ali at which8, = «.

We claim that an analysis of the solutions of the ®dmger equation through a study
of quadratic forms, integrals involving quadratic forms, and the differential equations which
govern them, provides an important tool in spectral theory, which will have many theoretical
and computational implications. To provide further justification, we apply these methods in
the following section to the absolutely continuous part of the spectrum.

5. Quadratic forms and the absolutely continuous spectrum

If, as we have maintained in this paper, the third-order differential equation (5) in section 3,
satisfied by all quadratic formg(x, 1) in the basic solutions(x, 1), v(x, A) is fundamental

to spectral theory for the Sdabdinger equation, it should be possible to derive spectral
properties from a knowledge of the asymptotics of solutibgs, 1) in the limit asx — oo.

Here we shall provide just one example of this kind of result, based on the hypothesis that
there is a solutiorY (x, A) of (5) which approaches a non-zero value in the limit> oo, for

some value of.. Note first of all the following result, where again we distinguish between
the oscillatory and non-oscillatory case.

Lemma 3. Suppose the Scdinger equation is oscillatory, for some valueof Then,
for this value ofa, there can be at most one linearly independent solukion A) of (5),
having the property that li;m, ., Y (x, A) exists and is non-zero.

Proof. Suppose there are two such linearly independent solutigremdY,. Then a suitable
linear combinationty of ¥, andY,, not identically zero, has the propertg(x, 1) — 0 as
X — OQ.

Let us write Yy = agu? + bouv + cov?.

Now R = +/u? + v2is non-zero forr > 0. Nor canR become arbitrarily small, for large
values ofx, since this would imply, v arbitrarily small, and so contradict the hypothesis
that the quadratic forn¥; have a non-zero limit ag — oco. Hence, say fox > 1, we have
R(x, A) > constant> 0, for fixed A, implying that I/ R? is bounded orx > 1. Multiplying
the quadratic formy by 1/R? and substituting: = R cosf, v = R sing, it follows that

lim agcog 6 + by cosh sinb + cosinf 6 = 0.

X—>00

However, this can only hold fa& monotonic increasing and differentialfdd /dx = 1/R? >
0), if 6(x, ») approaches a limit as — oco. But this would imply that both«(x, A) and
v(x, 1) have a finite number of zeros, whereas by hypothesis the DE is oscillatory.
Hence there can be at most one solutiogx, A) having a non-zero limit as — oo,
and the lemma is proved. O

(Note the assumption that the equation is oscillatory cannot be dropped. For example,
with V(x) identically zero and. = —1, there are two solutiong = coshx, v = sinhx,
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such that, in the limitt — oo, we have bothi? — v2 — 1 andu? — v2 4+ C(u — v)2 — 1,
for any constanC.)

Consider, then, a solutiori(x, 1) of (5), such thatr (x, ») approaches a non-zero limit
asx — oo. We suppose that the DE is oscillatory for this value.ofWe may also assume
thatY approaches aositivelimit, since if not we could considerY rather thany.

The value ofg in (7) will also be positive, since witl8 < 0 in (10) the quadratic form
defining Y factorizes into a product of real solutions of the Stinger equation. For
to have a non-zero limit, these factors would then be non-vanishing for sufficientlydarge
contradicting the assumption that the DE is oscillatory. By taking a constant multiple of
if necessary, we may therefore assume without loss of generalitystaad.

The following theorem describes the spectral properties of the Hamiltonian in terms of
the behaviour ot (x, A) atx = 0 andx = oo.

Theorem 2. Suppose that, for alk in some setS, there exists a solutioif (x, A) of (5)
for which Y (x, A) approaches a positive limit as — oo (this limit depending om in
general); take¥ to be ‘normalized’ so thag = 4 in (7). Suppose that fax € S, the DE
is oscillatory. Then:

(i) for all » € S, the spectrum of the differential operatéd = —d?/dx? + V (x), with
boundary conditionf (0) = 0, is purely absolutely continuous; and

(i) the spectral density function over this interval igzlY (O, ).

Proof. Let the quadratic forn¥, normalized so that = 4, be given byt = au?+buv+cv?.
Here we must have > 0; otherwise there would be a sequence of pdint$ (the zeros
of v) for which x, — oo andY < 0, contradicting the assumption thBthas a positive
limit. Since 8 = 4ac — b? = 4, we also have > 0.
Defining a pair of real numbers, B, with A > 0, by A2 = a, 2AB = b, B>+1/A? = ¢,
we can write the solutioy as

Y = (Au + Bv)? 4+ v?/A?.

Equation (15) shows that = /Y is a solution of Milne’s equation, and correspondingly,
substitutingR = +/Y into the general solution of the Séfutinger equation, we can construct
two solutions

=Y, cos/ 0 A) =Y(x, A)sm/ 0 k)
of (1). From the initial values at = 0, namelyR = A and drR/dx = B, atx = 0 we find
dfi df2

i & J2 & /
The initial conditions forr andv then imply
f1=Au+ Bv fo=v/A. (20)

Let us write lim o Y(x, 1) = 1/g(A) (A € S), for someg (1) > 0. From the expressions
for f1 and f>, using the asymptotic behaviour 8f asx — oo we have

fi=g Pcosgy)  fa=gq Y PsinGgy).
These two formulae are to be interpreted to mean, for example, thataso,
fi(x, 2) = (g7 + 0(D)) coslgx + o(x))

and it is a straightforward matter to expres® as linear combinations of;, f> to determine
the asymptotics of these functions too.
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One of the solutions of the Sddinger equation which plays an important role in
spectral analysis is the complex linear combinatjor- (f1 +if2) /A, given here by

f,n) =AY (x, 1) ex if)r 1 dr
= WERNL Yen T
From the behaviour of for largex, we know that

N
/ |f(x, M)]? dx ~ N/A%q as N — oo.
0

SinceA=2Y — (Ag)?Y~! — 0 asx — oo, we also have

N X
‘/ {(AZY — (Ag)?Y 1) exp(Zi/ 1 dt)} dx‘ = 0o(N)
0 0o Y
asN — oo.

Noting that

N xq 1 N 1
-1 . - _ - . - .
/0 {Y exp<2l/O v dt)} dx 5i {exp 2|/0 v dr 1}

is bounded uniformly inV, it follows that

N
/ F2(x, 1) d.x‘ = o(N) as N — oo
0

and hence that
im o FR M de
N—o0 fON If(x, )\)|2 dx

Equation (21) is just the so-called condition (A) referred to earlier, and the results given

in section 2 imply that the points i belong to the absolutely continuous spectrum of the

Hamiltonian. Using equations (20) to expreSs= (f1 +if2) /A as a linear combination of

u andv, we can then calculate the —coefficient given by (2), giving/ (L) = B/A+i/A%.
Hence, from (3), the spectral density function for)akk S is given by gv/dx = 1/ A2

Since A? = a = Y(0), we have finally, g/dA = 1/7Y (0, A) as stated. O

(21)
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